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Abstract

A recently proposed equation of state is further examined for compatibility with prior theory.
It is found, by adopting a more realistic functional relationship for one of the thermodynamic state
variables and eliminating higher-order terms from the model, that three historical theories for
determination of the Griineisen function fall directly out of the recently proposed model. One is
led to conclude that the newer model captures the essence of all of the older theories, each of
which being applicable under an appropriate circumstance.
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1. BACKGROUND

The estimation and measurement of the Griineisen function for metals is an important but
difficult task. Simple formulas exist for its estimation, in terms of specific heat and
compressibility, or alternately in terms of derivatives of the cold (i.e., zero degree) compression
curve, or still again in terms of derivatives of the lattice frequency. Depending on the validity
of various assumptions about the material, some of these definitions may be redundant.
However, when applied to actual substances, these methods can produce estimates that vary by

significant amounts (100%, in some cases [1]), even at ambient conditions.

Some variation is due to the fact that the Griineisen assumption, which has the Griineisen
function independent of temperature, is only an approximation. It is well known [2,3], for
example, that at low temperatures (at fractions of the Debye temperature) the Griineisen
parameter is indeed temperature dependent. Grodzka [1] presents data showing a significant
thermal variation in the Griineisen parameter at higher temperatures as well, for some materials.
Other variations in the estimate arise out of the differences in modeling of the propagation
velocities associated with lattice vibration. Three widely referenced models of this variety, which
provide not only an ambient value but also a volume-dependent estimate of the Griineisen
function, are those of Slater [4], Dugdale and MacDonald [5], and the free-volume theory [6].
Pastine [7] and Vashchenko and Zubarev [6] have attempted to generalize results by showing that
the variation of Poisson’s ratio with volume can account for some of the differences in the
various models of the Griineisen parameter. Unfortunately, experimental knowledge of how
Poisson’s ratio varies with compression and/or temperature is as elusive as knowledge of the

Griineisen function itself.

Historically, the estimation of the Griineisen function was further complicated by the
paucity of cold-compression data. Available high-pressure data were almost exclusively that of
shock transition, and so the cold-compression curves, needed by the various models in order to
estimate the Griineisen function, were necessarily back-extrapolated from shock data using a

Griineisen function that was a priori unknown (e.g., see Walsh et al. [8]).



To some extent, this uncertainty in the functional behavior of the Griineisen function has
persisted to the present. For example, Segletes [9] examined the Griineisen formulations present
in five of the widely used hydrocodes, which were developed by the U.S. Department of
Energy (DOE) national labs and the U.S. Department of Defense (DOD), as well as industry.
In examining these codes, which are utilized to model the high-compression deformations
associated with high-velocity impact and/or explosive loading, it was noted that a common
Griineisen formulation was not employed. Not only were the Griineisen formulations different
from code to code, but Segletes was able to show, in some cases, that thermodynamic instabilities

would result because of an incompatible selection of Griineisen and Hugoniot functions.

In a significant work, which, on the surface, might not appear to shed light on the
problem of estimating the Griineisen function, Rose et al. [10] proposed (in 1984) a universal
cold curve, which was able to provide a generic function for the lattice binding energy, which
could be appropriately scaled to match theoretical and experimental data for many metals. Since
the work of Rose and his colleagues, others have continued in the area as well, notably the same
team led by Vinet [11,12] and, more recently, a group led by Baonza [13,14]. These later efforts
succeeded in introducing temperature effects and thus produced a Griineisen-style equation of
state. However, in all of these more recent efforts cited, the function governing the reference-
compression curve was mutually exclusive of the function used to model the thermal effects. In
the works of Vinet et al., the variation of the bulk modulus was fitted for a number of materials,
which effectively parlayed into a Griineisen function. In the case of Baonza et al., a particular,
commonly employed, functional form of the Griineisen function was used—namely, I'/V equals
a fitted constant. While all of these works are worthy efforts in their own right, their primary

contribution lies in an area other than the theory of the Griineisen function.

Segletes [15,16] recently proposed an equation of state for metals, which captures, in the
absence of phase change, the behavior of metals into the megabar range. The model was
likewise inspired by the universal cold-curve work of Rose et al. [10]. However, unlike the
efforts of Vinet et al. [11,12] and Baonza et al. [13,14], in which the function governing the cold

compression was mutually exclusive of the function used to model the thermal effects, the recent



work of Segletes, by expressing the binding-energy function in terms of lattice frequency, as
opposed to lattice compression, unified the functions governing cold-compression and thermal
effects. In essence, a specification of the cold-compression behavior in Segletes’ model
automatically yields the Griineisen function, and conversely, a specification of the thermal effects,

by way of the Griineisen function, automatically yields a cold-compression curve.

Segletes’ equation is of the Griineisen variety and is given by

py-E = Eb{[(e/@(,)ff- 1] + K& -1)(©/8,F 1n(®/®0)} , 1)

where p and E are the pressure and specific internal energy, respectively, and the constant E, is
the specific binding energy of the lattice. The terms ©, and @ are the ambient and current values
of the characteristic temperature of the lattice, which, according to the tenets of Griineisen theory,
is assumed to be a function of volume only and is proportional to the maximum lattice
vibrational frequency, v. The concepts of characteristic temperature and lattice frequency derive
from the early work on specific heats at low temperatures, by Einstein, Debye, Born and von
Karman, and others. In the current context, the characteristic temperature serves as a
macroscopic parameter that permits the vibrational frequency of the lattice (a microscopic
quantity) to be inferred—namely, the theory of specific heats has these two parameters directly
proportional. Returning to eqn. (1), the parameter  is the thermodynamic state variable equal
to the ratio of specific volume to the Griineisen parameter, V/T', introduced by Segletes [17,18]

for convenience in manipulating the thermodynamic equations. The constant K is given by

K = S @

which incidentally is 1/(3T,) times the anharmonicity of the lattice. Values for K have been

observed to cluster in the 2/3 to 4/3 range for metals, which is compatible with the model’s




behavior becoming greatly idealized (i.e., linear in ®/@,) when the constant K takes on a value
of unity. C, is the bulk sound speed at absolute zero temperature and pressure, and I'; is the

ambient value of the Griineisen parameter.

In this model, the cold curve (i.e., zero-degree isotherm) is given by

E, = E,{1-[1 - K In(©/0,)] (0/8, )} | 3)

and

E,K? .
p. = —— (018" In(©/®,) , @

where p, and E, are the cold pressure and specific cold energy, respectively.

In macroscopic terms, the Griineisen function, I', is defined by I' = VAy = V(dp/dE),.
From microscopic arguments, however, the characteristic temperature, © (alternately, the

maximum lattice vibrational frequency, V), is related to the y variable through the relationship

that defines the Griineisen parameter:

1
— 5
v ® ) )

where primes (here and throughout the paper) denote ordinary differentiation with respect to
specific volume. In the general case, the differentiation in eqn. (5) would be partial at constant
temperature. However, for Griineisen materials, in which I' = I'(V) only, the derivative in

eqn. (5) becomes ordinary.




1t is interesting to note the distinction between Segletes’ equations and those of an ideal,
harmonic oscillator, which is often used to approximate a crystal lattice for purposes of

theoretical derivation. In the case of Planck’s harmonic oscillator at zero temperature [19],

dE_/dv is constant. No lattice is truly harmonic, of course, or else its thermal expansion

coefficient and Griineisen function would both be identically zero. From eqns. (3) and (5), it can

be seen, for the idealized case where K is unity, that the current model would have

dE /dv «<In(v/v,). A theoretical explanation for this distinction is not yet postulated.

Once the \ function is defined, integration of eqn. (5) gives the characteristic temperature,
which is the primary equation-of-state variable in eqn. (1). In the original papers,
Segletes [15,16] incorporated a linear relationship for y(V), based on results of his prior work
on thermodynamic stability [9,17,18], given in general form by

W/Wo =1- (row/) - V/Vo) . ©

The ambient values of specific volume and Griineisen parameter determine v, while the

constant (T,y’) was the sole material parameter that was actually fitted to the cold curve of

each metal. The fitted values of (I‘ow’ ), for nine metals, ranged from 0.43 to 0.88, with a vast

majority clustered in the vicinity of 0.8. In terms of compression, p, equal to (V~V)/V, the linear

W translates to a Griineisen function of the form I'=I'/ (1+Bp), with B as the fitting parameter.

This assumed linear relationship produced an excellent match to empirical data and first-
principles computations over a very wide range of specific volumes. However, for extremely
large compressions, this linear relationship can no longer be expected to hold, as it is later shown

that the y variable must vanish in the high-compression limit (V' — 0), whereas the linear form

of eqn. (6) will not do so for values of (T,¥’) other than unity.




In this report, a power law for the y(V) parameter, to replace the linear relationship
originally employed, is adopted. Though this choice of function still suffers deficiencies at very
large compressions, a number of positive outcomes result in the context of Segletes’
model [15,16] with this change: 1) the y(V) parameter vanishes with diminishing specific
volume, as is required; 2) binding-energy expansion data for actual metals are better fit with the
power law, as compared to the linear assumption; and most importantly, 3) Segletes’ equation
of state is shown, by neglecting higher-order terms, to reduce to the model of Slater [4], or
Dugdale and MacDonald [S], or to the free-volume theory [6], depending_ on the value of the

exponent used in the power law for y(V).
2. THE HIGH-COMPRESSION LIMIT FOR (V)

With the linear relation for y(V), given by eqn. (6), the high-compression limit for y
approaches a value of y, (1 - T;y’), which would typically lie in the 0.2 -\, range for metals.
To show what high-pressure limit is appropriate for v, in the context of the new model,
theoretical values for cold pressure and energy using Thomas-Fermi-Dirac (TFD) theory for
several metals were inserted into the new model in order to back out values for . In this
manner, the high-pressure limiting functional behavior for v, which would be required to match
TFD theory, was obtained. Values for the TFD data were obtained using the analytical fitting
equations described by Kerley [20].

It is not asserted here that the new equation of state can or should capture the high-
compression atomic interactions modeled with TFD zero-temperature theory. Rather, it merely
makes sense, from an application point of view, that the current model should blend smoothly
into TFD theory, so that a computational implementation can smoothly transition between

applicable theories.

Results of the TFD fits for y are shown in Figure 1, for several metals. Superimposed
on the graph are lines of constant I';y’, which characterized the original linear form employed

by Segletes [15,16]. A finite limiting value of W implies that I" approaches zero in the high-
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Figure 1. Limiting v values for several metals (solid lines), obtained by inserting TFD cold-
curve values into equation of state of Segletes. Superimposed (dashed lines) are limiting
values associated with the linear ¥ assumption.



compression limit, which is known not to be the case. The TFD results indicate that y must drop
to zero with decreasing specific volume, which indicates that the limiting value of I" is nonzero,
but instead related to the limiting slope. Regardless of material, the TFD results are roughly
linear, having a slope of approximately 2 in the very-low-volume limit, with the slope
diminishing slightly with increasing volume. A finite limiting slope of value m in Figure 1
implies a limiting value of the Griineisen parameter of I'p/m. The fact that (in the case of m=2)
I',/2 doesn’t equal 1/2 or 2/3, as might be expected, merely indicates that the current model fails
to capture the essence of TFD theory, which is no great surprise since the model’s equations are
not those of TFD theory. In any event, the linear treatment of v, originally employed, does not
blend smoothly into the realm where TFD theory governs. Another functional choice for v might

be more appropriate.
3. A POWER LAW FOR y(V)

As an alternative to the linear relationship for y(V), given by eqn. (6), a power law of the

form

Yy, = (VIVy)* @)

is investigated. The power-law form for (V) retains the mathematical simplicity necessary to
manipulate the governing equations conveniently, and despite a few deficiencies that will be
pointed out, it seems to be a step in the right direction. In terms of compression, p, the power-

law  translates to a Griineisen function of the form I'=I, [(1+p)t™~.

Figure 2 shows the same TFD results as presented previously, except that several contours
of a power-law y(V) are superimposed on the graph, rather than the linear contours of Figure 1.
At first glance, the power-law y(V) might seem to offer only minimal benefit over the linearized
form. Both forms cross over, rather than asymptote, to the TFD curves. Also, the power-law
curves, though reducing to a value of zero, as is required, do so with an infinite limiting slope,

so that the limiting value of T" is not positive, but remains zero. On the positive side, however,



Figure 2. Limiting \¢ values for several metals (solid lines), obtained by inserting TFD cold-
curve values into equation of state of Segletes. Superimposed (dashed lines) are limiting ¥
values associated with the power-law (V) assumption.



the curve corresponding to an exponent of 0.8 does blend nicely into the TFD curves. And of
the nine metals examined by Segletes [15,16], seven had values for I';y’ (corresponding roughly

to exponent x) in the 0.75 to 0.88 range, where the power law fit approximates the TFD

asymptote very well.

As far as actual cold-compression data, the power law and the linear assumption for y(V)
are nearly identical for I,y values of 0.8 over relative volumes from unity down to 0.5. In this

region, the power law provides a slightly more concave-upward curvature to the cold curve,

which can be mitigated by choosing a value of exponent x, slightly below the fitted value of
I,y (e.g., whereas I'jy'=0.76 fits stainless steel, a value of x=0.72 fits comparably well). Over

the range of available cold-compression data [10,21,22], the power-law and linear W(V)
formulations can be made virtually indistinguishable with appropriate selection of x, both

resulting in excellent fits to the data.

On the expansion end of the curve, the power-law y(V) is seen to provide an improved

correlation to data. At high values of anharmonicity (~9), the linear model was able to match
the universal cold-curve (UCC) fit of Rose et al. [10] with a value of I';y’ approaching unity.
The power law does equally well here, since for an exponent approaching unity, the linear and
power forms are identical. However, for low anharmonicities (~3), no single value of I‘O\v’ could

produce a match to the UCC model [15,16], but instead required a slope that was initially around
0.8, reducing to 0.55 at the larger expansions. Figure 3 compares the lattice potential energy
predicted by the UCC model of Rose to that using the linear-y approximation. In this graph, the

abscissa, a, represents the nondimensional, relative lattice spacing employed by Rose et al. [10].

By contrast, the power law y(V) is able to match the UCC model closely with a single
value of exponent x for a given anharmonicity. The value of the exponent x, which will provide

a match to the UCC model, is given approximately by

10



Figure 3. Lattice binding energy as a function of nondimensionalized lattice spacing for a
material. Dark line is UCC model of Rose et al. [10] Dashed lines are for model of

Segletes [15,16], with linear \ assumption, for two particular values of T,y' and an
anharmonicity of 3.
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x = % + L.mnoy , ®)

wl

where m is the value of anharmonicity, as defined by Rose ez al. [10]. The magnitude of
anharmonicity provides a metric on the deviation of an actual crystal’s behavior from the
harmonic idealization, in which the binding force of the atomic lattice would be proportional to
the atom’s displacement from the rest position. It is later shown that Segletes’ model [15,16]
approximates the harmonic solid described by Dugdale and MacDonald [5] when the value of
exponent x is selected as 2/3, in accordance with the lower limit of eqn. (8), as n—0. Figure 4
compares the lattice binding energy predicted by the UCC model to that of the current model,
when a power-law (V) is employed, the exponent being selected in accordance with egn. (8).
Though not labeled, the dark curve represents the UCC model, while the other five, essentially

overlapping, curves are for the current model with anharmonicities of 2, 4, 6, 8, and 10.
4. GRUNEISEN MODELS

Certain mathematical consequences of a power-law y(V), eqn. (7), which are subsequently

used, are easily derived and are simply stated as follows:

(Toy')y, = x 3 )
vo=x-(yiv) (10)

Vv - n- V) =(x-n-y/V) ; and 11)
Yy - n (VY] = x-n)x-D-(w/V)y . (12)

We now intend to show the primary result of this paper—namely, that three historical
Griineisen formulations (those of Slater [4], Dugdale and MacDonald [5], and the free-volume

12
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Figure 4. Lattice binding energy as a function of nondimensionalized lattice spacing for a
material. Dark line is UCC model of Rose et al. [10]. Dashed lines (essentially coincident) are
for model of Segletes [15,16], with power-law (V) assumption, for anharmonicity values of 2,
4, 6, 8, and 10.
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theory [6]) may be recovered through manipulation of the current model, if the material is
idealized and higher-order terms are neglected. Start with eqn. (4) and multiply by a power of

specific volume, V", where n is, at this point, still an arbitrary constant:

2Vn

(V") = ETV_(@/@")K In(©/8,) . (13)

The first and second derivatives of this equation may be obtained in a tedious but straightforward

manner as:

E K*V*"
(P V") = - (01, K-y -newv)1m(@/8,) + 1} (14)

and

/7 Eb K 2y K /
(B, V") = 2= (@00, |[K+29' ~nyM){[K+¥ -n(W/V) In(@/8,) + 1} +

v ‘ (15)

K +y/ ~n(y/V)] - yIv" - n(y/V) 1 1n(6/8,))
Take eqn. (15) multiplied by (<) and divide by eqn. (14) to obtain:
n\/ + - 2 4 (. /
e @YY ok st - 2neuvy - K +y/-ny)F + y ¥ -nyV)'} n(@/8)
(V" 1 + [K+y -n(y/V)]In(0/6,)

Eqns. (10-12) may be substituted into this expression to eliminate y’, the left hand y may be

broken out as V/T', and the equation may be algebraically manipulated to give

14



_3x-2n_ V (VY _

-_ =TI X
2 2 (p,v"y
: (17
x_ 1 {IK + -V P + (- n)(x - 1)(y/V)} In(@/8))
2 1 + [K+(x-mW/V)]In(0/8,)

The large term in parentheses at the end of this equation takes on the value K at ambient
conditions and diminishes with compression as the logarithm terms exert their influence. The
material parameter K, for materials studied by Segletes [15,16], has generally been close to the
idealized value of unity [whereupon (Cy/T)*<E,]. For the sake of discussion, therefore, consider
the large term in parentheses as unity, as an approximation to the situation near ambient volume

[In(®/0,)=0] for an idealized material (K=~1). Eqn. (17) becomes

_ Vn //
_3x-2n V@V (18)

r=-2xX"n_YV ¥ 7
2 2 (pvry

In this equation, x, which denotes the power of Y(V), is a material parameter. If we select the
value of parameter n, which has been arbitrary to this point, to be related to x in the following
way:

n=3x-4/3 , (19)

then x may be eliminated from eqn. (18) to yield

_ Vn //
r=-43 _Vv@&vy (20)
6 2 (p,v"y

Eqn. (20) is precisely the generalized result presented by Vaschenko and Zubarev [6] for the

15




Griineisen function. In this equation, if n=0 (i.e., when x=4/9), Slater’s [4] result is obtained.
If n=2/3 (i.e., when x=2/3), then the result of Dugdale and MacDonald [5] is recovered. Finally,
for the case where n=4/3 (i.e., when x=8/9), the free-volume theory [6] expression follows. What
this result tells us is that any one of the three historical Griineisen models may be nominally

applicable, depending on the properties of the material of interest. In the case of those metals
already studied by Segletes [15,16], values for I';y’, which correspond to exponent x at ambient

conditions [via eqn. (9)], fell as low as 0.43 (=4/9) for molybdenum and as high as 0.88 (=8/9)

for rubidium, with the vast majority of materials in the 0.75-0.85 range.

5. NONIDEAL EFFECTS

Let us now consider the practical influence of the large term in parentheses in eqn. (17),
idealized as unity in the previous section. The leading K term in the braces affects the ambient
value of the Griineisen parameter, while the remaining term involving logarithms governs the rate
at which the Griineisen function changes with volume. If Segletes’ equation of state is accepted,
then the fact that the large term in parentheses diminishes with volume indicates that all of the
historical Griineisen formulations (Slater, Dugdale-MacDonald, and free-volume theory) will tend
to overestimate the rate of change of the Griineisen function with compression when using a

cold-compression curve as the baseline.

Whereas the historical Griineisen models are based on various theories of lattice vibration,
the model of Segletes [15,16], in contrast, is shown to fit actual cold and Hugoniot data well to
several megabars of pressure. Thus, if one accepts the validity of the Griineisen assumption
[['=£(V)], then, over the compression range of actual thermodynamic data to which Segletes’

model fits well, one must accept as more accurate the mildly varying I of that model to the more
widely varying estimates produced by the theories of Slater, Dugdale-MacDonald and/or the free-

volume theory.

To see how the models compare, Figures 5-7 depict the Griineisen functional behavior

for a hypothetical material with parameter K=1 and I';=2. These three figures depict four curves

16



Figure 5. Griineisen function versus relative volume for hypothetical material with I'y=2 and
K=1, using power-law W(V), with x=4/9. Predictions using models of Slater [4], Dugdale and
MacDonald [5], and the free-volume theory [6] are shown for comparison. Note that ambient
value associated with power-law (V) matches that of Slater.

3

Figure 6. Griineisen function versus relative volume for hypothetical material with T’y =2 and
K=1, using power-law y(V), with x=2/3. Predictions using models of Slater [4], Dugdale and
MacDonald [5], and the free-volume theory [6] are shown for comparison. Note that ambient
value associated with power-law (V) matches that of Dugdale and MacDonald.
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Figure 7. Griineisen function versus relative volume for hypothetical material with T’y =2 and
K=1, using power-law \(V), with x=8/9. Predictions using models of Slater [4], Dugdale and
MacDonald [5], and the free-volume theory [6] are shown for comparison. Note that ambient
value associated with power-law (V) matches that of the free-volume theory.
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each. In each graph, there is a Griineisen curve corresponding to the power-law Y(V), with
exponent x equal to 4/9, 2/3, and 8/9 respectively. The resulting cold curve from the current
model is used to show what the models of Slater, Dugdale-MacDonald, and the free-volume
theory would predict for the behavior of the Griineisen function, depicted in each of the figures
by curves labeled S, D-M, and FVT, respectively. Per eqn. (17), with K equal to unity, the
ambient values for the current thory match the value of Slater when x=4/9, that of Dugdale and
MacDonald when x=2/3, and that of the free-volume theory when x=8/9.

To see a comparison of the other models to that of Segletes, for an actual material, we
consider the case of stainless steel, because of the availability of good cold-curve data out to
4 Mbar. Figure 8 shows the cold curve and Hugoniot for the steel. The data points are the same
as those originally analyzed by Segletes [15,16]. However, unlike the earlier work, in which a
linear y(V) function was fit to the data with a slope of 0.76, the cold curve is fit on this occasion
with a power law, with an exponent, x, of 0.72. The Hugoniot fit is excellent as far as data are
available (out to 2 Mbar). If the Griineisen assumption is accepted, then a power law exponent
of 0.72 must provide an accurate reflection of the Griineisen function down to a relative volume
of 0.68 (where Hugoniot data stop), and most likely provides an accurate reflection of the
function down to a relative volume of 0.55 (where cold data stop). Figure 9 shows the Griineisen
function corresponding to this fit with the solid curve. Overlaid on the figure are the results of
the models of Slater, Dugdale and MacDonald, and the free-volume theory, which are derived
from the curvature of the stainless steel cold-curve fit. As pointed out previously, the other
theories all show a Griineisen function that decreases more rapidly in compression than the

current model and data suggest.

Of course, at very high compressions and temperatures, electronic and non-Griineisen
thermal effects will come into play, and so even if a simple power law for y(V) might blend into
the TFD cold curve, it will likely fail to capture the high-temperature thermal effects properly.

For example, the shock Hugoniot of most materials asymptotes at a V/V,, value of around 0.2.

-Such an asymptote corresponds to a relative compression, p, of 4. Segletes [9] proved that the

asymptotic value of the Griineisen parameter on the Hugoniot cannot exceed (and, in fact, must
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Figure 8. Pressure-volume curves for stainless steel. Cold data to 4 Mbar shown with filled
symbols. Hugoniot data to 2 Mbar shown with open symbols. Curves represent cold-

compression and shock-Hugoniot curves with T=1.81 and power-law (V) exponent x, equal to
0.72.

Figure 9. Griineisen function versus relative volume for stainless steel with I'y =1 .81, using
power-law (V), with x=0.72. Predictions using models of Slater [4], Dugdale and
MacDonald [5], and the free-volume theory [6] are shown for comparison.
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take on) a value of 2/p,,,, which in this case, gives a value of 0.5. If the ambient value of the
Griineisen parameter were a typical value of I'=2, then this asymptotic shock limit would possess
a Yy, value of 0.8 at a V/V, value of 0.2. A quick look at the power-law curves of Figure 2
reveals that power-law y(V) functions with exponents between 0.4 and 1.0 will not reach the
point (0.2, 0.8). Thus, it would seem that the only way the Hugoniot can get to the point (0.2,
0.8) while the cold curve asymptotes to the TFD curves is if y is temperature dependent.

There is some reason to suspect such temperature-dependent behavior, by looking, for
example, at the aluminum Hugoniot fit of Segletes [15,16]. When using the known ambient
Griineisen value (Segletes used 2.39) with the current model, the Hugoniot prediction was quite
poor. ‘But by using an ambient value of half that amount, which doubles the value of v, the
aluminum Hugoniot and cold curve were fit with precision to 9 Mbar (V/V,, = 0.4). One might
be led to conclude that \ is, indeed, temperature dependent and that, in the case of aluminum,
a dependence occurs at relatively low temperatures. Such a thermal dependency would be able
to explain how the Hugoniot can achieve relatively large asymptotic values of Y/, while, at the
same time, the cold-curve value diminishes below this level. A significant thermal dependency
of the Griineisen function for aluminum has been reported by Grodzka [1]. In particular, he cites
experimental work with shocked aluminum foam that shows the ambient-volume aluminum
Griineisen parameter to decrease from a cold value of 2.5 to a value below 1.4 at 6500 J/g of
specific internal energy. Using a value of 3R/W to approximate the specific heat over this range
(where R is the universal constant, and W is the atomic weight of aluminum), 6500 J/g
corresponds to a temperature of approximately 7000 K, and would result from a moderate-

strength shock in the 1.5 Mbar range.

As a final note, another way in which Segletes’ model and those of Slater, Dugdale and
MacDonald, and the free-volume theory may be contrasted is accomplished by rearranging

eqn. (20) as

[2 2 _33’1 (\II/V)]W(PCV")/ e (pVn) =0 . &)




As before, the value of n determines which of the three older models is being discussed. This
equation is first-order in (p,V "y, By comparison, the current model, with a power-law \V(V)

function, satisfies the following identity:
K2(pV*) + [2K+x@V)]y (V) + W (V) =0, 22)

which is second-order in p,V*. These two equations are obviously different, in that eqn. (21)
contains only derivatives of p,V ", while eqn. (22) involves both p,V* and its derivatives.
However, there is also a great deal of similarity in that not only are both equations hyperbolic,
but for the idealized, harmonic case of K = 1 and x = n = 2/3, eqns. (21) and (22) differ only by
the first term of eqn. (22).

If eqn. (19) is used to convert eqn. (21) from n-based to x-based (to consider cases when
n # ), it can be shown (for K=1) that the transformed eqn. (21) also differs from eqn. (22) only
in the first term of eqn. (22), regardless of the value of x. It is for for this reason that at ambient
conditions, when p, [and thus the first term of eqn. (22)] is zero, the value of I, from Segletes’
model matches the older theories as a function of x, respectively. We can thus think of the older
theories as each being applicable for a particular class of material (defined by material parameter
%), but at the same time neglecting the p,V * term necessary to capture the empirical data

correctly.

6. CONCLUSIONS

In this report, the recently proposed equation of state of Segletes [15,16] has been
examined for compatibility with prior theory. In the original work, an excellent match to
available data and first-principles computations was achieved with the use of an assumed-linear
expression for the (V) function, defined as V/I'. In the current work, the use of a power law

for w(V) was examined in lieu of the linear relationship.
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A number of positive outcomes resulted with the use of this power law. First, the low-
volume limit for W(V) approaches zero, which was shown to be desirable in order to have the
current theory blend smoothly into Thomas-Fermi-Dirac cold-compression theory. Secondly, over
the range of available cold-compression data, the linear and power-law fits can be made virtually
indistinguishable, both providing excellent fits to the data. Finally, the binding energy function
using a power-law (V) assumption was able to reproduce the fit of Rose et al. [10] better,
especially in the area of lattice expansion. In this regard, an expression given by eqn. (8) shows
a simple relation between material anharmonicity and the fitted parameter of the current model,

in order to match the results of Rose et al. closely.

The primary result of the paper has been in showing how Segletes’ model with a power-
law y(V), for the case of an idealized material, ignoring higher-order terms, is able to reproduce
three historical Griineisen function models, depending on the value of the fitted material
parameter in Segletes’ model. In particular, when the model parameter, which relates to the
decrease of the Griineisen function with compression, takes on a value of 4/9, the result of
Slater [4] is obtained. When the parameter is taken as 2/3, the model of Dugdale and
MacDonald [5] is recovered. Finally, if the model parameter takes the value of 8/9, the free-

volume theory [6] expression follows.

The paper then has shown how Segletes’ model differs from the historical Griineisen
models, if the higher-order terms are retained. It becomes apparent that the historical models of
the Griineisen-function predict a more rapid decrease of the Griineisen function with compression
than does the current model. Some speculations have been put forward here on the possibility
of a temperature-dependent ¥ function, which would, by definition, violate the Griineisen
hypothesis. Not only would this possibility help to explain some seeming-incompatibilities
between the behaviors of the high-compression cold curve and the asymptotic Hugoniot, but a
temperature-dependent ¥ could also explain the otherwise anomalous behavior for aluminum
cited by Segletes [15,16] in the relative volume range of 0.85 to unity. Finally, the older
Griineisen models and Segletes’ model have been mathematically expressed in a different form,

which clearly shows the latter’s distinction from the others. In the case of the comparison
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between an idealized, harmonic material in the current model to the model of Dugdale and
MacDonald, the distinction originates from a single pV %5 term, which represents a higher-order

departure from the earlier theories.

There are several future efforts in this area that would be of utility. From a position of
theoretical interest, it would be useful to reconcile the current theory with the very-high-pressure,
equation-of-state theories, in something more than an empirical blend. Barring this reconciliation,
however, the current theory has still shown its applicability into the megabar regime with
excellent results, and should be of utility to those modeling material deformation resulting from
impact and conventional explosive events in the ordnance regime. Also, the area of non-
Griineisen (and/or phase change) effects seems an interesting and important area for further work.
For many materials, the Griineisen approach seems perfectly adequate over a large range of
compressions and pressures. However, there do seem to be materials (aluminum has been
mentioned in this paper) for which non-Griineisen effects at moderate pressures might provide

an adequate explanation.
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